Copied to
clipboard

G = C24:2D15order 480 = 25·3·5

1st semidirect product of C24 and D15 acting via D15/C5=S3

non-abelian, soluble, monomial

Aliases: C24:2D15, C23.5D30, (C2xC10):4S4, (C5xA4):7D4, C22:2(C5:S4), A4:3(C5:D4), C5:3(A4:D4), C10.26(C2xS4), A4:Dic5:1C2, (C23xC10):4S3, C22:(C15:7D4), (C22xA4):2D5, (C2xA4).12D10, (C22xC10).17D6, (C10xA4).12C22, (C2xC5:S4):2C2, (A4xC2xC10):2C2, C2.11(C2xC5:S4), (C2xC10):4(C3:D4), SmallGroup(480,1034)

Series: Derived Chief Lower central Upper central

C1C22C10xA4 — C24:2D15
C1C22C2xC10C5xA4C10xA4C2xC5:S4 — C24:2D15
C5xA4C10xA4 — C24:2D15
C1C2C22

Generators and relations for C24:2D15
 G = < a,b,c,d,e,f | a2=b2=c2=d2=e15=f2=1, faf=ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, bf=fb, ece-1=fdf=cd=dc, cf=fc, ede-1=c, fef=e-1 >

Subgroups: 1036 in 124 conjugacy classes, 21 normal (all characteristic)
C1, C2, C2, C3, C4, C22, C22, C5, S3, C6, C2xC4, D4, C23, C23, D5, C10, C10, Dic3, A4, D6, C2xC6, C15, C22:C4, C2xD4, C24, Dic5, D10, C2xC10, C2xC10, C3:D4, S4, C2xA4, C2xA4, D15, C30, C22wrC2, C2xDic5, C5:D4, C22xD5, C22xC10, C22xC10, A4:C4, C2xS4, C22xA4, Dic15, C5xA4, D30, C2xC30, C23.D5, C2xC5:D4, C23xC10, A4:D4, C15:7D4, C5:S4, C10xA4, C10xA4, C24:2D5, A4:Dic5, C2xC5:S4, A4xC2xC10, C24:2D15
Quotients: C1, C2, C22, S3, D4, D5, D6, D10, C3:D4, S4, D15, C5:D4, C2xS4, D30, A4:D4, C15:7D4, C5:S4, C2xC5:S4, C24:2D15

Smallest permutation representation of C24:2D15
On 60 points
Generators in S60
(16 43)(17 44)(18 45)(19 31)(20 32)(21 33)(22 34)(23 35)(24 36)(25 37)(26 38)(27 39)(28 40)(29 41)(30 42)
(1 56)(2 57)(3 58)(4 59)(5 60)(6 46)(7 47)(8 48)(9 49)(10 50)(11 51)(12 52)(13 53)(14 54)(15 55)(16 43)(17 44)(18 45)(19 31)(20 32)(21 33)(22 34)(23 35)(24 36)(25 37)(26 38)(27 39)(28 40)(29 41)(30 42)
(2 57)(3 58)(5 60)(6 46)(8 48)(9 49)(11 51)(12 52)(14 54)(15 55)(17 44)(18 45)(20 32)(21 33)(23 35)(24 36)(26 38)(27 39)(29 41)(30 42)
(1 56)(3 58)(4 59)(6 46)(7 47)(9 49)(10 50)(12 52)(13 53)(15 55)(16 43)(18 45)(19 31)(21 33)(22 34)(24 36)(25 37)(27 39)(28 40)(30 42)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)
(1 37)(2 36)(3 35)(4 34)(5 33)(6 32)(7 31)(8 45)(9 44)(10 43)(11 42)(12 41)(13 40)(14 39)(15 38)(16 50)(17 49)(18 48)(19 47)(20 46)(21 60)(22 59)(23 58)(24 57)(25 56)(26 55)(27 54)(28 53)(29 52)(30 51)

G:=sub<Sym(60)| (16,43)(17,44)(18,45)(19,31)(20,32)(21,33)(22,34)(23,35)(24,36)(25,37)(26,38)(27,39)(28,40)(29,41)(30,42), (1,56)(2,57)(3,58)(4,59)(5,60)(6,46)(7,47)(8,48)(9,49)(10,50)(11,51)(12,52)(13,53)(14,54)(15,55)(16,43)(17,44)(18,45)(19,31)(20,32)(21,33)(22,34)(23,35)(24,36)(25,37)(26,38)(27,39)(28,40)(29,41)(30,42), (2,57)(3,58)(5,60)(6,46)(8,48)(9,49)(11,51)(12,52)(14,54)(15,55)(17,44)(18,45)(20,32)(21,33)(23,35)(24,36)(26,38)(27,39)(29,41)(30,42), (1,56)(3,58)(4,59)(6,46)(7,47)(9,49)(10,50)(12,52)(13,53)(15,55)(16,43)(18,45)(19,31)(21,33)(22,34)(24,36)(25,37)(27,39)(28,40)(30,42), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60), (1,37)(2,36)(3,35)(4,34)(5,33)(6,32)(7,31)(8,45)(9,44)(10,43)(11,42)(12,41)(13,40)(14,39)(15,38)(16,50)(17,49)(18,48)(19,47)(20,46)(21,60)(22,59)(23,58)(24,57)(25,56)(26,55)(27,54)(28,53)(29,52)(30,51)>;

G:=Group( (16,43)(17,44)(18,45)(19,31)(20,32)(21,33)(22,34)(23,35)(24,36)(25,37)(26,38)(27,39)(28,40)(29,41)(30,42), (1,56)(2,57)(3,58)(4,59)(5,60)(6,46)(7,47)(8,48)(9,49)(10,50)(11,51)(12,52)(13,53)(14,54)(15,55)(16,43)(17,44)(18,45)(19,31)(20,32)(21,33)(22,34)(23,35)(24,36)(25,37)(26,38)(27,39)(28,40)(29,41)(30,42), (2,57)(3,58)(5,60)(6,46)(8,48)(9,49)(11,51)(12,52)(14,54)(15,55)(17,44)(18,45)(20,32)(21,33)(23,35)(24,36)(26,38)(27,39)(29,41)(30,42), (1,56)(3,58)(4,59)(6,46)(7,47)(9,49)(10,50)(12,52)(13,53)(15,55)(16,43)(18,45)(19,31)(21,33)(22,34)(24,36)(25,37)(27,39)(28,40)(30,42), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60), (1,37)(2,36)(3,35)(4,34)(5,33)(6,32)(7,31)(8,45)(9,44)(10,43)(11,42)(12,41)(13,40)(14,39)(15,38)(16,50)(17,49)(18,48)(19,47)(20,46)(21,60)(22,59)(23,58)(24,57)(25,56)(26,55)(27,54)(28,53)(29,52)(30,51) );

G=PermutationGroup([[(16,43),(17,44),(18,45),(19,31),(20,32),(21,33),(22,34),(23,35),(24,36),(25,37),(26,38),(27,39),(28,40),(29,41),(30,42)], [(1,56),(2,57),(3,58),(4,59),(5,60),(6,46),(7,47),(8,48),(9,49),(10,50),(11,51),(12,52),(13,53),(14,54),(15,55),(16,43),(17,44),(18,45),(19,31),(20,32),(21,33),(22,34),(23,35),(24,36),(25,37),(26,38),(27,39),(28,40),(29,41),(30,42)], [(2,57),(3,58),(5,60),(6,46),(8,48),(9,49),(11,51),(12,52),(14,54),(15,55),(17,44),(18,45),(20,32),(21,33),(23,35),(24,36),(26,38),(27,39),(29,41),(30,42)], [(1,56),(3,58),(4,59),(6,46),(7,47),(9,49),(10,50),(12,52),(13,53),(15,55),(16,43),(18,45),(19,31),(21,33),(22,34),(24,36),(25,37),(27,39),(28,40),(30,42)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15),(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)], [(1,37),(2,36),(3,35),(4,34),(5,33),(6,32),(7,31),(8,45),(9,44),(10,43),(11,42),(12,41),(13,40),(14,39),(15,38),(16,50),(17,49),(18,48),(19,47),(20,46),(21,60),(22,59),(23,58),(24,57),(25,56),(26,55),(27,54),(28,53),(29,52),(30,51)]])

46 conjugacy classes

class 1 2A2B2C2D2E2F 3 4A4B4C5A5B6A6B6C10A···10F10G···10N15A15B15C15D30A···30L
order122222234445566610···1010···101515151530···30
size112336608606060228882···26···688888···8

46 irreducible representations

dim11112222222222336666
type++++++++++++++++
imageC1C2C2C2S3D4D5D6D10C3:D4D15C5:D4D30C15:7D4S4C2xS4A4:D4C5:S4C2xC5:S4C24:2D15
kernelC24:2D15A4:Dic5C2xC5:S4A4xC2xC10C23xC10C5xA4C22xA4C22xC10C2xA4C2xC10C24A4C23C22C2xC10C10C5C22C2C1
# reps11111121224448221224

Matrix representation of C24:2D15 in GL5(F61)

01000
10000
00100
00010
00001
,
600000
060000
00100
00010
00001
,
10000
01000
006000
006001
006010
,
10000
01000
000601
000600
001600
,
3919000
1939000
00001
00100
00010
,
2219000
4239000
00100
00001
00010

G:=sub<GL(5,GF(61))| [0,1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[60,0,0,0,0,0,60,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,60,60,60,0,0,0,0,1,0,0,0,1,0],[1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,60,60,60,0,0,1,0,0],[39,19,0,0,0,19,39,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,1,0,0],[22,42,0,0,0,19,39,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,1,0] >;

C24:2D15 in GAP, Magma, Sage, TeX

C_2^4\rtimes_2D_{15}
% in TeX

G:=Group("C2^4:2D15");
// GroupNames label

G:=SmallGroup(480,1034);
// by ID

G=gap.SmallGroup(480,1034);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-5,-2,2,85,451,3364,10085,1286,5886,2232]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=e^15=f^2=1,f*a*f=a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,e*c*e^-1=f*d*f=c*d=d*c,c*f=f*c,e*d*e^-1=c,f*e*f=e^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<